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Abstract

Precipitation (PPT) is the primary climatic determinant of plant growth and aboveground net primary productivity 
(ANPP) for many of the world’s major terrestrial ecosystems. Thus, relationships between PPT and productivity 
can provide insight into how changes in climate may alter ecosystem functions globally. Spatial PPT–ANPP 
relationships for grasslands are found remarkably similar around the world, but whether and how they change 
during periods of extended climatic anomalies remain unknown. Here, we quantified how regional-scale PPT-
ANPP relationships vary between an extended wet and a dry period by taking advantage of a 35-year record of 
PPT and NDVI (as a surrogate for ANPP) at 1700 sites in the temperate grasslands of northern China. We found 
a sharp decrease in the strength of the spatial PPT–ANPP relationship during an 11-year period of below average 
PPT. We attributed the collapse of this relationship to asynchrony in the responses of different grassland types 
to this decadal period of increased aridity. Our results challenge the robustness of regional PPT–productivity if 
aridity in grasslands is increased globally by climate change.
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降水-生产力的空间关系是否稳定不变？

摘要：降水是全球陆地生态系统中植被生长和净初级生产力的主要驱动因素。因此，探究降水和生产力

关系有助于深入了解气候变化如何改变生态系统功能。降水-生产力的空间关系在全球不同草地上非常

相似，但在连续多年气候异常的情况下，这种关系是否会发生变化以及如何变化尚不清楚。本研究利用 

利用中国北方温带草地长达10年低于多年平均降水的时期，基于遥感植被指数数据，量化了区域尺度上

降水-植被生产力关系在持续多年的干湿期之间将如何变化。结果表明，在连续10年的干期，降水-生产

力空间相关性急剧下降，而该空间关系的下降主要是由于不同草原类型对干旱的响应在空间上存在高度的

异质性，即不同生态系统对干旱的响应程度存在差异。因此，如果未来气候变化进一步加剧全球草地的干

旱，那么基于历史时期(平水期)得到的降水-生产力空间关系推测区域尺度植被生产力可能导致误差。

关键词：草地，净初级生产力，降水-生产力关系，干旱，气候变化，植被指数
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INTRODUCTION
Precipitation (PPT) is the primary climatic determinant 
of plant growth and aboveground net primary 
productivity (ANPP) for the world’s major grasslands, 
as well as many other terrestrial ecosystems (Knapp 
et  al. 2017; Running et  al. 2004; Sala et  al. 2012). 
Variations in mean annual PPT spatially can account 
for >50% of the variation in mean ANPP among 
grassland sites (e.g. Bai et al. 2008; Guo et al. 2012; 
Hu et al. 2010; Sala et al. 2012). PPT is also the major 
climatic factor controlling the interannual variations 
in ANPP in grasslands (Hu et al. 2018; Knapp et al. 
2017). Thus, relationships between precipitation 
and productivity (PPT–ANPP) can provide insight 
into how changes in climate may alter ecosystem 
functions (Huxman et al. 2004).

PPT–ANPP relationships can be derived from 
responses of ANPP to interannual variation in PPT 
at a particular location (temporal model) or by 
combining ANPP data from multiple sites across 
regions that encompass a substantial PPT gradient 
(spatial model). In theory, temporal models are 
superior to spatial models in providing near-term 
(e.g. several years) insight for ecosystem responses 
to climatic fluctuations (Adler et  al. 2020; Knapp 
et al. 2017). However, most findings suggest that the 
temporal PPT–ANPP relationships are inconsistent 
among ecosystems and usually too weak to make 
predictions (Huxman et  al. 2004; Sala et  al. 2012). 
In addition, the temporal model fails to take into 
account shifts in species composition, which a 
critical factor determining ANPP dynamics over long 
term. Therefore, as the well-known space-for-time 
substitution method, spatial models are alternative 
approaches employed for predicting ANPP response 
to PPT change, especially for predicting the responses 
over long term (e.g. decades or more) with shifts in 
species composition and biogeochemistry (Adler et al. 
2020; Hu et al. 2010; Huxman et al. 2004; Knapp et al. 
2017).

As reported, the spatial PPT–ANPP relationships in 
grasslands are remarkably robust in North America 
(R2  =  0.94, Sala et  al. 1988), China (R2  =  0.76, Bai 
et  al. 2008) and South Africa (R2  =  0.83, Forrestal 
et al. 2017). The reported robust spatial relationship 
implicitly convey an information that the spatial model 
is universal and stable. However, the spatial models 
are typically derived under climates near historical 
averages. It remains unclear if these relationships 
will change through time with projected increases 
in climate variability and extremity (IPCC 2013).  

Grassland ecosystems differ dramatically in drought 
sensitivity as well as responses to alterations in PPT 
attributes (Heisler-White et  al. 2009; Knapp et  al. 
2015; Maurer et  al. 2020), which thus should alter 
the spatial PPT–ANPP relationships. However, how or 
if the spatial PPT–ANPP relationships will be altered 
by climate change is unknown.

Here, we assessed how the regional-scale PPT–
ANPP relationship in the temperate grasslands of 
northern China was impacted by an extended dry 
period. We took advantage of a 35-year record 
(1981–2015) of PPT and NDVI (a surrogate for 
ANPP) for this ca.1.2 million km2 region, focusing 
on an extended dry period (11 of 13  years with 
below average PPT) that followed a 17-year period of 
slightly above average PPT.

Hypothesis

Assuming the spatial model is the most robust (i.e. 
highest in the R2) under long-term mean climate 
condition, we used this unique dataset to assess 
two alternative hypotheses: (i) ecosystems in this 
region would all respond similarly to this dry decade 
so that the strength (R2) of PPT–ANPP relationship 
would remain relatively unchanged despite overall 
reductions in ANPP (Fig. 1, Cases 1 and 2). In Case 
1, all ecosystems exhibit high resistance to rainfall 
reduction (no change in ANPP) and the degree of 
rainfall reduction is similar among sites. In Case 2, 
all ecosystems exhibit a similar sensitivity to rainfall 
reduction. Alternatively, (ii) grassland ecosystems 
across this region could respond independently or 
asynchronously so that the regional-scale PPT–ANPP 
relationship would be weakened (Fig. 1, Cases 3 and 
4). In Case 3, all ecosystems exhibit high resistance to 
rainfall reduction and the degree of rainfall reduction 
is spatially heterogeneous. In Case 4, all ecosystems 
exhibit diverge sensitivities (i.e. spatial asynchrony 
[SA]) to rainfall reduction. We also assessed alterations 
in precipitation-use efficiency (PUE = ANPP/PPT) as 
an extra indicator to identify potential mechanisms of 
the change. For example, if responses to a dry period 
are asynchronous across sites, we would predict that 
both the regional mean and cross-site differences in 
PUE would increase (Fig. 1, Cases 3 and 4).

MATERIALS AND METHODS

Study region

The study area is the temperate grassland region 
in Inner Mongolia, China. Representative of the 
vast Eurasian grasslands, this region is dominated 
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by three intergrading grassland types, i.e. the xeric 
desert steppe, the semi-arid typical steppe and the 
mesic meadow steppe (Fig. 2). Mean annual PPT in 
the region ranges from ca. 100 to 500 mm and mean 
annual temperature ranges from −3 to 9 °C (DAHV 
and GSAHV 1996). Most plant species are C

3
 owing 

to the relatively cool climate. Dominant species of the 
meadow steppe are Stipa baicalensis, Leymus chinensis, 
Filifolium sibiricum and Stipa grandis. The typical steppe 
is dominated by S.  grandis, L.  chinensis, S.  krylovii, 
Cleistogenes squarrosa and Agropyron cristatum. And 
the desert steppe is dominated by Stipa klemenzii, 
Agropyron desertorum, Stipa gobica, Cleistogenes songorica 
and Artemisia frigida.

Datasets

NDVI data were derived from Advanced Very High 
Resolution Radiometer, Global Inventory Modeling 
and Mapping Studies (AVHRR GIMMS, 8  ×  8 km2 
in resolution, 1982–2015). The dataset is a 10-day 
compiled product, which had been subjected to 
correction in order to reduce the effects of residual 

clouds, atmospheric perturbations, variable 
illumination and viewing geometry. August is 
generally when peak aboveground biomass occurs in 
the study region, thus we calculated monthly NDVI 
by averaging the three 10-day NDVI compilations in 
this month as a proxy of ANPP.

Relative long-term (1980–2015) climate data 
including monthly PPT, air temperature, solar 
radiation and wind speed were obtained from the 
database of the China Meteorological Administration 
for nearly 750 meteorological stations distributed 
throughout this grassland region. We used the 
Anusplin software package (Hutchinson 2014) to 
interpolate and derive spatially continuous climate 
data at an annual basis with a thin plate smoothing 
spline interpolation method at 8 × 8 km2 resolution, 
which was consistent with the spatial resolution of 
the NDVI dataset. In addition, we calculated potential 
evapotranspiration (PET, the algorithm adopted 
by the United Nations Environmental Programme 
(UNEP)) with this gridded climate dataset and hence 
annual aridity index, the ratio of PPT to PET. Finally, 

Figure 1: Possible mechanisms that could alter the robustness of the spatial PPT–ANPP relationship and cross-site 
frequency distribution of PUE (depicted as curves in the lower right of the four cases) when experiencing regional drought 
conditions. In Case 1 (upper left), all sites illustrate high resistance to drought (i.e. little reduction in productivity), and 
experience similar amount of PPT reduction. The R2 of PPT–ANPP relationship will not change and the cross-site average 
PUE will increase. In Case 2 (lower left), vegetation productivity decreases similarly as a result of PPT reduction at all sites, 
resulting in no change in the spatial R2, as well as the cross-site average PUE. In Case 3 (upper right), all sites illustrate high 
resistance to drought but experience diverse amounts of PPT reduction, resulting in decrease in the spatial R2. In addition, 
since the sites manifest different magnitudes of increase in PUE, not only the overall average, but the cross-site variance 
of PUE will increase. In Case 4 (lower right), productivity at the sites decrease asynchronously in response to drought, 
resulting in a decrease in the spatial R2 and an increase in cross-site variance in PUE. Note that the overall average in PUE 
may increase or decrease in the 4th case. The negative effects of SA of PPT and productivity (NDVI in this study) on the 
spatial R2 can be seen in Supplementary Fig. S1.
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we used daily PPT data from the 47 meteorological 
stations located in the study region to calculate other 
PPT characteristics, e.g. total PPT in growing season 
and in June–July, mean size of rainfall events for the 
entire year or just the growing season, and number 
of rainfall events exceeding 5, 10 and 20 mm.

Data processing

We sampled 500 sites for the desert steppe, 700 for 
the typical steppe and 500 sites for the meadow 
steppe in the region (Fig. 2). This sampling design 
reflected the proportional area covered by the 
grassland types. The 1700 sites were randomly 
sampled to make sure they were evenly distributed 
in the study region and represented most climatic 
conditions (Guo et al. 2012). All subsequent analyses 
were based on the data from these sites. With PPT 
and NDVI at all sites in the region, linear regression 
analysis was conducted to derive the spatial R2 and 
slope for the spatial PPT–NDVI relationship. Note 
that exponential regression analysis may be used for 
deriving the spatial R2 for a specific ecosystem type 
(see results), in which case the spatial R2 was larger 
than the linear model. A  5-year moving window 
was employed to assess the temporal dynamics of 
the spatial R2 and slope, and the mean of PPT and 
NDVI for the 5 years in each window were used to 
establish the linear function. One reason we used 

5-year moving window approach was to dampen 
extreme annual variations and facilitate identifying 
decadal trends. Another reason was to identify a ‘dry’ 
(and ‘wet’) year to calculate SA of changes in PPT 
and NDVI across sites (see details below).

To clarify which mechanisms may alter the spatial 
R2 in dry years, we derived a metric to quantify the 
SA of changes in PPT and NDVI across sites in the 
study region. SA

PPT
 was calculated to quantifying  

the cross-site variability in PPT change (Cases 1 and 
3 in Fig. 1):

SAPPT = std
Å

∆ PPT

PPTbase

ã
 (1)

where std means standard deviation of relative 
changes in precipitation among the 1700 sites. PPT

base
 

is the mean annual precipitation in a period. ΔPPT 
indicates the differences of precipitation between 
PPT

base
 and the minimum (or maximum) annual 

PPT within the 5  years, indicating change in PPT 
in the driest (or wettest) year. High SA

PPT
 indicates 

high spatial asynchrony in the PPT change across 
sites (Case 3)  and low SA

PPT
 indicates low spatial 

asynchrony (Case 1).
We can yield only one value of SA

PPT
 if compare 

the PPT in the normal period and a dry period, which 
cannot be used directly to identify the mechanism. In 
addition, it is also possible that the spatial R2 declines 

Figure 2: Study region and spatial distribution of sampling sites for analysis.
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in wet years with similar potential mechanisms 
illustrated in Fig. 1. Therefore, using the data of a 
moving 5-year window of the study period, we 
calculated SA

PPT
 for both the dry (the driest year) 

and wet (the wettest year) conditions, respectively. 
Further, the asymmetry of PPT response, i.e. the 
ratio of SA

PPT
 in dry and wet years was calculated to 

identify potential mechanism:

Appt =
SAPPT_dry

SAPPT_wet
 (2)

One value of A
ppt

 was derived within each 5-year 
window for the entire study region or for each 
grassland type. If A

ppt
 > 1, the SA due to PPT reductions 

in dry years is larger than that PPT increase in wet 
years, and the spatial R2 of ANPP–PPT relation would 
be lower in dry years than that in wet years.

The second metric SA in vegetation response 
to rainfall change (Cases 2 and 4 in Fig. 1) was 
calculated as

SAveg = std
Å

∆ NDVI/NDVIbase
∆ PPT/PPTbase

ã
 (3)

where NDVI
base

 is the base NDVI, and here is the 
mean annual peak NDVI within the 5-year window. 
ΔNDVI indicates the difference between NDVI

base
 and 

the NDVI in the year with maximum or minimum 
PPT. The term in the parenthesis in Equation (3) 
indicates the degree of response in NDVI to changes 
in PPT. SA

veg
 describes the SA in NDVI in response to 

PPT. High SA
veg

 indicates high spatial asynchrony in 
vegetation responses (Case 4) and low SA

veg
 indicates 

low spatial asynchrony in the response (Case 2).
Asymmetry of vegetation response, i.e. the ratio of 

SA
veg

 in dry and wet years was calculated as

Aveg =
SAveg_dry

SAveg_wet
 (4)

One value of A
veg

 was derived within each 5-year 
moving window for the entire study region or for 
each grassland type. If A

veg
 > 1, the SA in NDVI in 

response to dry periods is larger than that in response 
to wet periods, which implies the spatial R2 of ANPP–
PPT relation would be lower in dry years than wet 
years.

RESULTS
We first show the temporal dynamics of PPT through 
1982–2015, with a focus on the degree of PPT 
reduction during the 1999–2011 dry period. We then 
investigate how the strength (i.e. R2) of the spatial 

PPT–NDVI relation changed during the dry period. 
At last, we explored the mechanism underlying the 
change of the spatial R2 from the angle of PUE and SA 
in PPT and NDVI.

The climate in the study region was characterized 
with three distinct periods. The region experienced 
slightly wetter than average conditions from 1982 to 
1998 (6.8% or 20 mm yr−1 above average), followed 
by a decade of dry conditions from 1999 to 2011 (11 
of 13 years with below average PPT, 16.5% or 49 mm 
yr−1), with recovery of PPT beginning in 2012 (Fig. 
3). Similarly, other PPT characteristics, e.g. growing 
season PPT, and the number of rainfall events 
>5, 10 and 20  mm all declined in the dry period 
(Supplementary Fig. S1).

Corresponding to the temporal dynamics 
of PPT, the R2 of the spatial PPT–productivity 
relationship showed distinct temporal phases (Fig. 
4). The 5-year moving average of the spatial R2 
was significantly correlated with that of annual 
PPT (P < 0.01, R2 = 0.64). Specifically, the spatial 
R2 was high and relatively stable during the wet 
period. But it decreased abruptly during the dry 
period and recovered in the following wet period 
(Fig. 4). Using the aridity index as well as PPT 
characteristics, we also identified a reduction of 
the spatial R2 during the decadal dry period (Fig. 
4 and Supplementary Fig. S2). This suggests that 
air temperature and the other PPT characteristics 
were not covarying in ways that would cause 
the spatial relationship between PPT and NDVI 
to change.

Considering the wet (1982–1998) and the dry 
period (1999–2011) separately, we regressed 
mean annual PPT and NDVI for each period. For 
the entire region (Fig. 5a), the spatial relationship 
was weaker during the dry period (R2  =  0.71) 
in comparison to the wet period (R2  =  0.84). In 
addition, the slope was also significantly steeper 
for the decadal dry period (P  <  0.01). A  similar 
pattern was evident for the spatial PPT–NDVI 
relationships during the dry period within each 
grassland type, with a reduction of R2 more than 
0.3 units, suggesting that the explanatory power 
of PPT on the spatial variations in NDVI largely 
declined (Fig. 5b–d). However, no significant 
difference in slopes was found between the two 
periods for each grassland type (P >0.05).

As Fig. 6 illustrates, the PUE (ratio of NDVI to 
PPT) in the dry period (1999–2011) was 0.0018 
NDVI mm−1, which was higher than that in the wet 
period (0.0016 NDVI mm−1, P < 0.05). In addition, 
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the cross-site variance of PUE during the dry period 
(0.0007) was significantly larger than that in the 
wet period (0.0003, P  < 0.05). All grassland types 
also showed the same phenomenon, i.e. increase in 
both the magnitude and cross-site variance during 
the dry period (Fig. 6c–h). These results indicate 
that an extended period of low PPT increased 
ecosystem PUE, but in a pattern that was spatially 
asynchronous. Changes in PUE during the dry 
period were consistent with mechanisms 3 and 4 in 
Fig. 1. This implies that the reduction in spatial R2 
and increase in regional PUE during the dry period 
may be caused by either spatially asynchronous 
changes in PPT or NDVI.

To further clarify which mechanism (3 and 4 in 
Fig. 1) caused the reduction of R2 during the dry 
period, we assessed the asymmetry metrics developed 
in this study. Our results indicated that the average 
asymmetry in changes of PPT, A

ppt
 (mean of the 30 

values based on 5-year window calculations in 1982–
2015) was <1 across most of the region (Fig. 7a). In 
addition, the average A

ppt
 for each grassland type was 

<1 (P < 0.05). This suggests that the SA in changes 
of PPT was due to PPT increases being greater than 
decreases, implying the spatial R2 should decrease in 
wet years but not in dry years. In other words, SA in 
PPT change is likely not the reason for the reduction 
in spatial R2 during the drought period. In contrast, 
A

veg
, the metric quantifying the SA of NDVI change, 

was >1 across the region (P < 0.05), except for some 
sites located in the desert steppe, suggesting that 
the SA in vegetation responses to rainfall changes 
was greater in drought than in wet years in most 
of the region (Fig. 7b). This means that the spatial 
asymmetry in vegetation response was likely the key 
mechanism causing the reduction in spatial R2 during 
the decadal dry period.

DISCUSSION

Shift of the spatial PPT–NDVI relationship in the 
dry period

We assessed the spatial PPT–NDVI relationship across 
the temperate grasslands of northern China during 
extended periods of slightly above- and well-below 
average PPT. During a decadal dry period, the slope 

Figure 4: Temporal dynamics of PPT anomalies, i.e. the difference between annual PPT and average annual PPT during the 
study period, and the R2 of the regional relationship between NDVI and annual PPT (or aridity index, the ratio of annual 
PPT to PET). The data are 5-year moving averages, thus values in a year (e.g. 1985)  indicate the averages of previous 
5 years (1981–1985).

Figure 3: Annual PPT and aridity index (the ratio of 
PPT to PET) for the grassland region of Inner Mongolia 
in northern China for the period 1982–2015. The dashed 
lines indicate mean (±std) annual PPT in 1982–2015 and 
the gray shading denotes the dry period (1999–2011).
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of the regional PPT–NDVI relationship increased 
but the variation in productivity explained by PPT 
declined sharply. This result partially contrasts with 
previous analyses. Past studies have suggested the 
slope of regional relationships would increase and 
also that the variation explained by PPT would be 
greater as ecosystem functions converged under 
severe water limitation (Bai et al. 2008; Huxman et al. 
2004). We investigated other climatic factors, e.g. air 
temperature, attributes of PPT patterns, that may 
affect the spatial relationship during dry periods. For 
example, increasing air temperatures may increase 
the degree of water limitation, which may weaken 
the PPT–productivity relationship (Epstein et al. 1997; 
Hu et al. 2007). In addition, shifts in PPT attributes 
such as evenness of the distribution of rainfall during 
the growing season, or the size and distribution of 
individual events may affect the PPT–productivity 
relationship independent of PPT amount (Fay et al. 
2003; Guo et  al. 2015; Heisler-White et  al. 2008). 

However, we also observed a sharp reduction in the 
spatial R2 during the dry period when we substituted 
the aridity index, which incorporates the effect 
of air temperature (Fig. 3a). This suggests that air 
temperature contributed little to the change in R2 of 
the spatial PPT–productivity relationship. In addition, 
using indices of PPT characteristics of rain events 
instead of total rainfall also yielded a reduction of the 
R2 during the dry period (Supplementary Fig. S3). 
Thus, we conclude that the decline in R2 of the spatial 
PPT–productivity relationship is not due to variations 
in other characteristics of PPT.

Mechanism of the shift of PPT–NDVI 
relationship

Further, our analyses suggest that the spatial 
heterogeneity of vegetation responses to PPT 
change, rather than the spatial heterogeneity in PPT 
change itself, plays a key role in altering the spatial 
relationship. We show that vegetation responses to 

Figure 5: Comparisons of the spatial PPT–NDVI relationship during the wet period (1982– 1998, in blue) and decadal dry 
period (1999–2011, in red) for the entire region (a) and different grassland types (b: desert steppe, c: typical steppe, d: 
meadow steppe). The fitted lines are significant at the level of 0.05 except case of meadow steppe in the dry period (d).

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/article/15/4/711/6508995 by N

ational Science & Technology Library user on 02 January 2023

http://academic.oup.com/jpe/article-lookup/doi/10.1093/jpe/rtac008#supplementary-data


Copyedited by: BG

718 JOURNAL OF PLANT ECOLOGY | 2022, 15:711–720

dry years are more spatially asynchronous compared 
with responses to wet years (i.e. A

veg
 >1). This implies 

that these grasslands are functionally similar under 
wet conditions but are differentially sensitive to dry 
periods. A possible mechanism is plants in grasslands 
employ more diverse strategies when coping with 
drought stress. For example, the study of Craine et al. 
(2013) indicates that the capacity of physiological 
drought tolerance varies in a range of as large as 
10-fold in global grassland species. In addition, spatial 
heterogeneity in soil texture and nutrients may 
contribute to the spatially asynchronous responses of 
vegetation during dry conditions. For example, soils 
that vary in texture and nutrient availability would 
result in difference degrees in soil water availability 
in dry years, and thus different degrees of water stress 
for communities (Epstein et al. 1997; Fay et al. 2015). 

Note that the plant species are mostly C
3
 in our study 

region, thus we cannot conclude that the strength 
of the spatial PPT–NDVI relation would decline to a 
similar degree beyond C

3
 grasslands. The generally 

greater water stress experienced normally by C
4
 

grasslands might result in the spatial relationship 
being less sensitive to extended dry periods.

Implications

The spatial PPT–productivity relationship has been 
used previously to predict regional and global levels of 
productivity, e.g. the Miami model (Hu et al. 2010; Leith 
1975). In addition, the spatial relationship has been 
used to predict the trajectory of changes in ecosystem 
productivity in response to climate change via space-
for-time approaches (Sala et  al. 2012). Our analyses 
indicate that using these spatial relationships to predict 

Figure 6: Frequency distributions of PUE for all grasslands (a, b), desert steppe (c, d), typical steppe (e, f) and meadow 
steppe (g, h) in the study region during wet (1982–1998, a, c, e, g) and dry (1999–2011, b, d, f, h) periods. Both the mean 
PUE and the standard deviation (δ) of the regressed Gaussian functions are significantly different between the two periods 
(P < 0.05). Higher δ indicates a larger range of PUE across the pixels.
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the future may be difficult if global climate change leads 
to increases in aridity or the occurrence of extended dry 
periods, both predicted by a range of climate change 
scenarios (IPCC 2013). In case of temporal model, when 
considering years with extremely climate condition, 
the PPT–ANPP relation was inconsistent with the near-
universally used linear models (Knapp et  al. 2017). 
Our finding suggests that such kind of inconsistence 
also exist in the spatial model, which is conventionally 
considered stable and robust (Sala et  al. 2012). This 
highlights the importance of further investigating the 
mechanism controlling the function of ecosystem 
under extreme climate conditions.

CONCLUSIONS
Based on a 35-year remotely sensed vegetation 
index, we investigated the temporal dynamics of 
regional (spatial) PPT–productivity relationship in 
the temperate grasslands in northern China. We 
found a sharp decrease of the strength (R2) of the 
spatial relationship during a decadal dry period 
relative to a previous wet period, driven we contend, 
by substantial SA in responses of different grassland 
ecosystems. Thus, the spatial PPT–productivity 
relationship is not as robust temporally as it is among 
global grasslands. Caution should be exercised if 
spatial PPT–productivity relationships are used to 
predict future ecosystem productivity, or verify 
model projections, given expectations that extended 
periods of PPT anomalies will become more frequent 
in the future for grasslands globally.

Supplementary Material
Supplementary material is available at Journal of 
Plant Ecology online.
Figure S1: Theoretical demonstration of the effects 
of spatial asynchrony of changes in precipitation 
(a) and NDVI (b) on the spatial R2 of PPT–NDVI 
relationship.
Figure S2: Temporal dynamics of precipitation 
within different periods (a), average of rainfall size in 
different periods (b) and the number rainfall events 
above 5, 10 and 20 mm (c).
Figure S3: Temporal dynamics of the spatial R2 
between NDVI and annual precipitation (PPT), 
precipitation in growing season (PPTgs), precipitation 
in June–July (PPTjj), average size of rainfall events 
in whole year (AvgRainEvent) and growing season 
(AvgRainEvent), number of rainfall events above 
5  mm (NumRain5), 10  mm (NumRain10) and 
20 mm (NumRain20), respectively.
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